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Our mini review summarizes what is known about the

(bio)degradation of melanosomes. Unlike melanosome biogen-

esis where our knowledge enables us to explain it in molecular

terms posing many interesting questions on the relation

between lysosomes and melanosomes, melanosome degradation

has remained �terra incognita�. Observations at optical and
ultrastructural levels describe the disintegration of melano-

somes in the lysosomal compartment (in auto- and heteroph-

agosomes). Histochemical studies suggest the participation of

acid hydrolases in the process of melanosome degradation.

Biochemical data confirm the ability of lysosomal hydrolases to

degrade melanosome constituents except the melanin moiety.

The similarity of melanin structure to that of polycyclic

aromatic hydrocarbons suggests that melanin should be sensi-

tive mainly, if not exclusively, to oxidative breakdown. In vitro

melanin can indeed be decomposed by an oxidative attack and

the degradation is accompanied by fluorescence and decreasing

absorbance. From enzymes engaged in the biotransformation of

polycyclic hydrocarbons only phagosomal NADPH oxidase

meets the criteria (particularly as for compartmental and

catalytic properties) to be involved in melanin biodegradation.

The in vivo biodegradation of melanin has so far been clearly

demonstrated in Aspergillus and fungi melanins.
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INTRODUCTION

Unlike melanin and melanosome biogenesis, where our

knowledge begins to be comprehensive enough to understand
these processes and to describe them at the molecular level
(1–4), the data available for melanin and melanosome

(bio)degradation are limited and ambiguous.
To describe these events: (a) It is necessary to distinguish

strictly between the terms disintegration and degradation. In
this paper, disintegration means fragmentation into smaller

units (a quantitative change), whereas degradation includes
chemical destruction of the original structure(s) by convert-
ing it ⁄ them into metabolites and degradatory products (a

qualitative change). In the literature these two terms have
been used synonymously which often makes the interpret-
ation of older results troublesome. (b) It is important to keep

in mind that the melanosome is a subcellular organelle of
higher order consisting of many constituents (5, 6). Melanin
represents the most characteristic and often the major moiety

but only one from many (see Fig. 1). The description of
melanosome degradation would not be complete, if we
concentrated only on the fate of melanin.

Melanosome Constituents can be Degraded Hydrolytically

Except the Melanin Moiety

The disintegration of melanosomes is a progressive process.

Mildly disintegrated pigment granules appear frayed at the
edges with melanin fragments nearby. With further disinteg-
ration, the melanosomes appear disrupted and their density

decreases. In advanced stages the underlying matrix struc-
tures may become evident and the melanin particles blend
with matrix material (42).

Histological studies have described melanosome disintegra-
tion in many cell types, but uniformly in phagosomes. Much
attention has been given to keratinocytes and their lysosomally
sequestered melanosome complexes (7–16), in which melano-

somes lose their integrity and are converted into ill-defined
melanosomal dust (14, 15). Taking into account the latest
models of hierarchy in melanin supramolecular structure,

melanin dust might represent one of the self-assembling units
of eumelanin (17). It is important to add that the products of
melanosome disintegration remain in the membrane-limited

lysosomal compartment (and are not released in the cyto-
plasm) until their loss by epidermal desquamation (14, 15).
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Melanosome disintegration has been noted also in hetero-
phagosomes of professional phagocytes – macrophages

(7, 18–20, 30), endothelial cells of skin vessels (21) and
mast cells (22). The loss of melanosomal integrity has been
observed also in autophagosomes of pigment producing

cells – in melanocytes of hyperpigmented skin (23, 24) and
hair bulbs (25), in the cells of junctional naevi (24), in
morbus Bowen (26) and frequently in melanoma cells

(16, 27, 28, 30, 31) (Fig. 2), in which the occurrence of
aberrant melanosomes, often resembling partly dissociated
melanosomes, is typical (29, 32, 33). Morphologically
observed melanosome disintegration does not allow for

reliable conclusions about the degradation of melanin as a
chemical individuum (15).
Turnover of melanosomes in eye pigment tissues, i.e. in the

retinal pigment epithelium (RPE), choroid and iris, has been
studied thoroughly by Schraermeyer and his group (34–37).
As for the melanin granule degradation, a step in melano-

some turnover, they critically summarized the frequently
observed association of melanosomes and lysosomes which
according to some authors (38, 39) might suggest that

melanosomes might be degraded, but they correctly conclu-
ded that it was questionable whether such an association
indicates melanin degradation (34). Under normal conditions
melanin(osome) laden macrophages can be found among

choroid melanocytes exhibiting some signs of melanin
disintegration (34).
In partly depigmented areas of the choroid in the Smyth

chicken, a model for vitiligo, melanosomes displayed variant
appearance with irregular shape, electron-lucent halos, pig-
mented vesicles, which all seemed to indicate melano-

some ⁄melanin degradation (40). Moreover, the choroids
contained macrophages removing melanin (40). The hypo-
pigmentation of choroid and RPE in the pallid mouse eye

was explained by the digestion of immature melanosomes in
secondary lysosomes (41).

Biochemical In vitro Studies

Attempts to induce melanosome disintegration or even

complete degradation by biochemical means in vitro have
failed. Japanese scientists, after treating radioactively labelled
melanosomes with lysosomal hydrolases, noticed the quick

degradation of lipids, the slow degradation of proteins but
the stability of the melanin moiety of melanosomes (12,
43–45). The melanin framework of melanosomes resisted

even harsh acid hydrolysis treatment with 6 mol HCl ⁄ l at
120�C for 72 h (46, 47) and melanosomes retained their size,
shape and ultrastructural features (46), and even their
appearance in scanning electron microscopy (47). The release

of radioactivity from C14-DOPA-labelled melanosomes was
found to be negligible (44, 45, 48). Decarboxylation of
melanin monomers accompanying acid hydrolysis (49, 69)

had no impact on the melanin moiety architecture (46, 47).
The treatment of melanosomes with alkaline pH is

associated with a release of melanin fragments (50); it

induces formation of a soluble melanoprotein of fine
granular structure (51) and is exploited in practice to
distinguish between eumelanin and phaeomelanin in histo-

logical sections (33, 52). Nevertheless, such extreme pH in
living cells would be incompatible with their survival.
All the above mentioned biochemical data suggest that

hydrolytic mechanisms can hardly participate in the break-

down of the melanosomal melanin moiety.

Histochemical Studies

Histochemical papers demonstrated repeatedly an associ-
ation of melanosomes with lysosomal enzymes, which might

explain the digestion of non-melanin melanosome constitu-
ents. No lysosomal enzyme capable of melanin degradation
has been found (8). The association of acid hydrolases with

melanosomes (4, 53–55) can be explained not only by
merging of melanosomes with lysosomes (7–16) but also
simply by ranking melanosomes among lysosome-related

organelles (56). Many reports on the presence of acid
phosphatase in melanosome complexes (9, 57–59) and on
its assumed role in melanosome degradation (57, 58) have

appeared. The reaction specificity of acid phosphatase
[EC 3.1.3.2] consists in disconnecting ester bonds of phos-
phoric acid. As there has been no report on the participation
of phosphoric acid in maintaining the melanosome archi-

tecture or melanin supramolecular arrangement, its real role
in melanosome ⁄melanin disintegration and degradation is
zero.

In vivo Studies

Schraermeyer and Dohms (36) investigated by electron
microscopy whether melanosomes isolated from the choroid
and RPE of cattle eyes could be degraded in phagolysosomes

of cultured murine macrophages. After 3 d, a loss of mel-
anosome homogenous electron density and an appearance of
internal membranous structure consisting of concentric

Fig. 1. Chemical composition of nine kinds of isolated melanosomes.
Black segments, melanin; white segments, protein; dotted segments, the
other substances (carbohydrates, lipids, inorganic substances); HP,
Harding Passey mouse melanoma; B16, B16 mouse melanoma; S91,
Cloudman S91 mouse melanoma; HU, human melanoma; EQ, horse
melanoma; MA, Bomirski Syrian hamster melanoma; HH, human black
hair; BC, bovine choroids; SE, Sepia ink; based on our results in (4, 5).
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lamellae was apparent suggesting melanin degradation. The
observed lamellae were described as remnants of the original
melanin polymer in the melanosome or may result from self-

assembly of degradation products (36). Degradation of some
melanosomes into smaller fragments without any internal
structure was also observed.
Injection of heavily melanized dog hair melanosomes into

peritoneal cavities of DBA2 and C57BL6J mice induced a
granulomatous reaction with the occurrence of foreign body
multinuclear giant cells but there was no evidence of any

melanosomal disintegration. Melanosomes behaved like inert
foreign bodies (60). Bomirski hamster melanoma melano-
somes inoculated into Syrian hamster foot pads had granular

incompact appearance but the look of the original isolated
melanosomes used in the experiment was similar. In addition,
there was no immunological cellular reaction of the host (60).

Moths fed dark hair did not digest melanins and excreted
them in their faeces (61).

Melanin Structure Suggests a Possible Role of Redox

Reactions in Pigment Degradation

The fundamental molecular unit of eumelanin (a detailed
structure of phaeomelanin has remained obscure) is taken
to be a small planar oligomer built from several 5,6-di-

hydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid
units which further assembles into structure of higher
order – parallel layers stabilized by p-stacking and by side
on interactions (62, 63). Hence, considering the melanin

structure, redox mechanisms analogous with the biotrans-
formation of polycyclic hydrocarbons (64, 65) seem to be
more probably involved in pigment degradation than the

hydrolytic reactions (60). Such an opinion is further suppor-
ted by many reports demonstrating the redox breakdown of
melanin in vitro:

1 In histology melanin is removed by pigment bleaching with
oxidants such as permanganate (66) or hydrogen peroxide

(67). In supramolecular terms melanin bleaching begins
with an oxidative conversion of the multilayered stacked
sheet to largely destacked mildly bleached thin melanin

sheet as documented by atomic force microscopic meas-
urements (68).

2 Chemical degradation of melanin pigments exploiting
oxidation with permanganate or breakdown with HI has

become a fundamental method for the quantitative
estimation of eumelanin and phaeomelanin, respectively
(69, 70).

3 Oxidative degradation of melanin after the addition of (71,
72) or boiling with H2O2 (73, 74) has been particularly
thoroughly studied. Degradation can be quantitatively

measured as a decrease of the absorbance (73,75,76); in the
dark melanin is either resistant to the oxidation by H2O2

(76) or the decomposition is not associated with fluores-
cence (77).

4 Partial decomposition of melanin by boiling with hydrogen
peroxide is accompanied by development of strong fluor-
escence which can be exploited in melanin quantification

(73, 74). The nature of the melanin fluorogen(s) formed has
remained unknown. It has been suggested that fluorescence

indicates structural defects in melanin polymer (73, 78), for
more details see (77); the bond between quinoid carbonyls,

namely C5–C6 of the indole-5,6-quinone was calculated to
be particularly weak and hence prone to nucleophil attack
and to free radical attack (75).

5 Oxidative melanin degradation associated with fluores-
cence (71, 72, 79) – see Fig. 3, can be induced as a result of
photoinduced hydrogen peroxide production (77). Reac-

tion leading to the H2O2 photoproduction (80, 81) are
summarized in Table 1. Photochemically induced free
radicals can be involved in melanin degradation (82–84).

To summarize the in vitro observations we dare say that
melanin can be oxidatively degraded. Bleaching and fluores-
cence are accompanying phenomena signalling the process of

degradation. Can oxidative breakdown of melanin (and
melanin moiety of melanosomes) so often observed in vitro
occur also under in vivo conditions? The synthesis of

hydrogen peroxide in melanosomes was demonstrated (85)

Fig. 2. Top – melanosomes and a large melanosome complex (arrow) in
B16 melanoma. The complex can be not only place of melanosome
disintegration ⁄ degradation but also source of material for melanosome
synthesis as suggested in (35, 37). [Magn. 55 000:1]. Bottom – Autoph-
agosomes containing melanosomes in B16 mouse melanoma. [Magn.
8700:1].
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and mechanisms of its possible photoproduction described
(77, 80–82). Living cells are protected by antioxidant

defences which prevent oxidative stress in living cells.
Nevertheless, the irradiation of eye and skin melanosomes
can be so intensive that the antioxidant defence may be

overcome.

Can Enzymes involved in the Biotransformation of Polycyclic

Aromatic Hydrocarbons Participate in Melanin Degradation?

Under the in vivo situation, polycyclic aromatic hydrocar-

bons are usually biotransformed enzymatically (64, 65, 86,

87). Two groups of enzymes are specialized in this respect:
monooxygenases and dioxygenases. Cytochrome P450 (CYP)

system (EC1.14.14.1), a monooxygenase, is a biotransform-
ing system localized in the endoplasmic reticulum and in
mitochondria (65, 86–89). As under physiological conditions

melanosomes can hardly reach these compartments, the
participation of CYP in the biodegradation of the melanin
moiety of melanosomes, seems to be improbable. Moreover,

CYP activity was shown to be easily destroyed by quinones
(89), and quinones are produced during melanogenesis (90–
92) and quinoid groups are present in melanin biopolymers
(1, 70, 91). Proteomic analysis of phagosomal proteins has

recently revealed the presence of cytochrome P450 probably
because of the endoplasmic reticulum recruitment to phag-
osomes (93), but whether the endoplasmic reticulum enzyme

activities survive, has remained unknown.
Dioxygenases take part in the polycyclic hydrocarbons’

degradation primarily through the introduction of both

atoms of molecular oxygen (87, 88, 94), but they are localized
only in the cytoplasmic compartment of the cell.
We all remember that disintegration of melanosomes is

situated in phagosomes. Phagosomal (and plasma) mem-
branes contain NADPH oxidase, a multicomponent enzyme,

Fig. 3. Photoinduced melanin fluorescence in human foetal retinal pigment epithelium. Upper row, fluorescence microscopy; lower row, normal
microscopy; Left column, unirradiated tissue; right column, tissue after 10-min irradiation with UVA and near UVA light.

Table 1. Reactions leading to H2O2 and reactive oxygen species photo-
production

M(Æ)n + hm fi M(Æ)n
* fi M(Æ)n+x

M(Æ)n
* + O2 fi MðÆÞoxn + OÆ�

2
M(Æ)n+x + O2 fi MðÆÞoxn + OÆ�

2

M(Æ)n
2OÆ�

2 + 2H+ fi O2 + H2O2

H2O2 + Fe2+ fi Fe3+ + OH- + ÆOH
OÆ�
2 + 2H2Q « H2O2 + HQÆ + HQ-

For the explanation, see (77, 80)
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which in the case of the phagosome, produces superoxide
anion radical and hydrogen peroxide to its interior (65, 95).
Melanin structures are sensitive to H2O2 and reactive oxygen

species attacks (67, 73–75, 77, 80–84). NADPH oxidase
meets the requirement of phagosomal localization and
reaction specificity, and may be a hot candidate for a key
role in the degradation of melanosomal melanin moiety.

However, its real role remains to be proven.
Unlike aromatic polycyclic hydrocarbons, a convincing

direct demonstration of melanin degradation in living animal

cells has been lacking. There are only reports demonstrating
melanin degradation by Aspergillus fumigatus (96) and a very
slow degradation of fungal melanins (uniformly 14C-labelled

fungal melanins incubated in various soils were losing 5–10%
14C evolved as 14C -carbon dioxide for 12 weeks) (97). These
reports together with morphologically detected disappear-

ance of both melanin pigment in microscopy (77) (Fig. 3) and
electron dense material in electron microscopy (34, 36)
suggest that complete melanosome biodegradation might be
possible, particularly via oxidative reactions, in spite of the

fact that melanin is a highly resistant structure (98, 99).

Some Questions for the Future

1. Is the biodegradation of melanin in vivo a common or a
rare phenomenon?

2. What is the nature and fate of melanin degradatory
products in vivo? Can we presume that degradatory
fluorescing products, especially in the case of extracuta-

neous melanin, may accumulate as simultaneously depos-
ited autofluorescent lipofuscin (77)?

3. Phaeomelanin solubility, reactivity and free radical con-
tents are higher compared with eumelanin (100) and

phaeomelanosomes appear to be more primitive melano-
somes lacking some components (4). Hence, would the
biodegradability of phaeomelanin be easier compared

with eumelanin?
4. A set of acid hydrolases is associated with melanosomes

from early stages of their maturation. What triggers the

hydrolysis of non-melanin moieties of melanosomes?
5. Is there any relationship between the degree of melanosome

maturation and the biodegradability? The presence of
ongoing melanogenesis results in an increase of a subset of

lysosomal hydrolases (4, 54, 59) and the more melanized
melanosomes appear tohave a progressively lowerpH (101).
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6. Hach P, Duchon J, Borovanský J. Ultrastructural and biochemical
characterization of isolated melanosomes. Folia Morph (Prague)
1977;21:407–410

7. Mishima Y. Macromolecular changes in pigmentary disorders. Arch
Dermatol 1965;91:519–557

8. Zelickson AS, Windhorst DB, White JG, Good RA. The Chediak–
Higashi syndrome. Formation of giant melanosomes and the basis
of hypopigmentation. J Invest Dermatol 1967;49:575–581

9. Hori Y, Toda K, Pathak MA, Clark WH Jr, Fitzpatrick TB.
A fine structure study of the human epidermal melanosome
complex and its acid phosphatase activity. J Ultrastruct Res
1968;25:109–120

10. Olson RL,Nordquist J, EverettMA. The role of epidermal lysosomes
in melanin physiology. Br J Dermatol 1970;83:189–199

11. Jimbow K, Sato S, Kukita A. Lysosomal degradation of melano-
somes. Skin Res 1971;13:19–34 (In Japanese)

12. Ohtaki N, Seiji M. Degradation of melanosomes by lysosomes.
J Invest Dermatol 1971;57:1–5

13. Fitzpatrick TB, Quevedo WC Jr. Biological processes underlying
melanin pigmentation and melanin disorders. Mod Trends Derma-
tol 1971;4:122–149

14. Wolff K. Melanocyte–keratinocyte interactions in vivo: the fate of
melanosomes. Yale J Biol Med 1972;46:384–396

15. Wolff K, Honigsmann H. Are melanosome complexes lysosomes?
J Invest Dermatol 1972;59:170–176

16. Bleehen SS. Ultrastructural studies on tumours and cell cultures of
the Harding–Passey mouse melanoma. Br J Dermatol 1974;90:637–
648

17. Clancy CMR, Nofsinger JB, Hanks RK, Simon JD. A hierarchical
self-assembly of eumelanin. J Phys Chem B 2000;104:7871–7873

18. Ohtaki N. Melanosome and lysosome. I. Lysosomal activity in
relation to growth of melanoma. Bull Tokyo Med Dent Univ
1970;17:89–102

19. Sato S, Nishijima A, Hiraga K. Lymphatic transport and phago-
cytosis of melanosomes in blue nevus. Arch Derm Forsch 1975;252:
239–244

20. Mishima Y. Cellular and subcellular differentiation of melanin
phagocytosis and synthesis by lysosomal and melanosomal activity.
J Invest Dermatol 1966;46:70–75

21. Sato S, Kukita A. Electron microscopic study of melanin-phagocy-
tosis by cutaneous vessels in cellular blue nevus. J Invest Dermatol
1969;52:528–532

22. Sato S, Kukita A, Sato S. Phagocytosis and degradation of
melanosomes by the mast cells. J Invest Dermatol 1969;53:183–186

23. Jimbow K, Quevedo WC Jr, Fitzpatrick TB, Szabo G. Some aspects
of melanin biology: 1950–1975. J Invest Dermatol 1976;67:72–89

24. Wolff K, Schreiner E. Melanosomal acid phosphatase. Arch Derm
Forsch 1971;241:255–272

25. Jimbow K, Szabo G, Fitzpatrick TB. Ultrastructural investigation
of autophagocytosis of melanosomes and programmed death of
melanocytes in white Leghorn feathers: a study of morphogenetic
events leading to hypomelanosis. Dev Biol 1974;36:8–23

26. Kawamura T, Ikeda S, Mori S, Obata H. Electron microscopic
findings compatible with those of the lysosome (autophagic vacuole)
revealed in the melanocytes in cases of conspicuous pigment
blockade. Jap J Dermatol Series B 1966;76:405–408

27. Hirone T, Nagai T, Matsubara T, Fukushiro R. Human malignant
melanomas of the skin and their pre-existing conditions. In:
Kawamura, T, Fitzpatrick, TB, Seiji, M. Biology of Normal and
Abnormal Melanocytes. Baltimore, London, Tokyo: University
Park Press; 1971. pp. 329–348

28. Césarini JP. Recent advances in the ultrastructure of malignant
melanoma. Rev Europ Études Clin Biol 1971;16:316–322

29. Hunter JAA, Zaynoun S, Paterson WD, Bleehen SS, MacKie R,
Cochran AJ. Cellular fine structure in the invasive nodules of
different histogenetic types of malignant melanoma. Br J Dermatol
1978;98:255–272

284 Pigment Cell Res. 16, 2003



30. Mishima Y. Lysosomes in melanin phagocytosis and synthesis.
Nature 1967;216:67

31. Seiji M, Ohtaki N. Lysosomes in mouse melanoma. J Invest
Dermatol 1971;56:436–440
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46. Borovanský J, Hach P, Duchon J. Melanosome: an unusually
resistant subcellular particle. Cell Biol Int Rep 1977;1:549–554

47. Broekhuyse RM, Kuhlmann ED, Winkens HJ. Experimental
autoimmune anterior uveitis. III. Induction by immunization
with purified uveal and skin melanins. Exp Eye Res 1993;56:
575–583
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